GluR2-Dependent Properties of AMPA Receptors Determine the Selective Vulnerability of Motor Neurons to Excitotoxicity
نویسنده
چکیده
Van Damme, P., L. Van Den Bosch, E. Van Houtte, G. Callewaert, and W. Robberecht. GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol 88: 1279–1287, 2002; 10.1152/jn.00163.2002. AMPA receptor-mediated excitotoxicity has been implicated in the selective motor neuron loss in amyotrophic lateral sclerosis. In some culture models, motor neurons have been shown to be selectively vulnerable to AMPA receptor agonists due to Ca influx through Ca -permeable AMPA receptors. Because the absence of GluR2 in AMPA receptors renders them highly permeable to Ca ions, it has been hypothesized that the selective vulnerability of motor neurons is due to their relative deficiency in GluR2. However, conflicting evidence exists about the in vitro and in vivo expression of GluR2 in motor neurons, both at the mRNA and at the protein level. In this study, we quantified electrophysiological properties of AMPA receptors, known to be dependent on the relative abundance of GluR2: sensitivity to external polyamines, rectification index, and relative Ca permeability. Cultured rat spinal cord motor neurons were compared with dorsal horn neurons (which are resistant to excitotoxicity) and with motor neurons that survived an excitotoxic insult. Motor neurons had a higher sensitivity to external polyamines, a lower rectification index, and a higher relative Ca permeability ratio than dorsal horn neurons. These findings confirm that motor neurons are relatively deficient in GluR2. The AMPA receptor properties correlated well with each other and with the selective vulnerability of motor neurons because motor neurons surviving an excitotoxic event had similar characteristics as dorsal horn neurons. These data indicate that the relative abundance of GluR2 in functional AMPA receptors may be a major determinant of the selective vulnerability of motor neurons to excitotoxicity in vitro.
منابع مشابه
GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity.
AMPA receptor-mediated excitotoxicity has been implicated in the selective motor neuron loss in amyotrophic lateral sclerosis. In some culture models, motor neurons have been shown to be selectively vulnerable to AMPA receptor agonists due to Ca(2+) influx through Ca(2+)-permeable AMPA receptors. Because the absence of GluR2 in AMPA receptors renders them highly permeable to Ca(2+) ions, it has...
متن کاملGluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis.
AMPA receptor-mediated excitotoxicity has been implicated in the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Motor neurons in vitro are particularly vulnerable to excessive AMPA receptor stimulation and one of the factors underlying this selective vulnerability is the presence of a large proportion of Ca2+ -permeable (i.e. GluR2-lacking) AMPA receptors. Howev...
متن کاملAstrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity.
Influx of Ca(2+) ions through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors contributes to neuronal damage in stroke, epilepsy, and neurodegenerative disorders such as ALS. The Ca(2+) permeability of AMPA receptors is largely determined by the glutamate receptor 2 (GluR2) subunit, receptors lacking GluR2 being permeable to Ca(2+) ions. We identified a difference in G...
متن کاملAMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability.
AMPA receptor-mediated excitotoxicity is proposed to play a major pathogenic role in the selective motoneuron death of amyotrophic lateral sclerosis. Motoneurons have been shown in various models to be more susceptible to AMPA receptor-mediated injury than other spinal neurons. It has been hypothesized that this selective vulnerability of motoneurons is caused by the expression of highly Ca(2+)...
متن کاملHigh abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons.
Striatal and cortical neurons containing NADPH-diaphorase [NADPH-d(+)] are highly vulnerable to excitotoxicity that is induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- or kainate-sensitive glutamate receptors. This has been attributed to Ca2+ entry through AMPA/kainate receptors in NADPH-d(+) neurons. In this study, we applied single cell RT-PCR techniqu...
متن کامل